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Abstract : Let G be a finite and simple graph with the vertex set V. = V(G) and edge setE = E(G). Ifvis
a vertex of a graph G, the open k-neighborhood of v, denoted by N,(v) and Ni[v] = N, (v) U {v}is the
closed k-neighborhood of v. A function f: V(G) - {—1,+1}is a k-distance non-negative signed
dominating function (k-DNNSDF) of a graph G, if for every vertex v € V, f(N¢[V]) = Xyen, f@) = 0.
The Kk-distance non-negative signed domination number (k-DNNSDN) of a graph G equals the minimum
weight of a k-DNNSDF of G, denoted by ;/kW;’ (G). This paper contains some properties of k-DNNSDN in
graphs and some families of graphs such as cycles, paths, Complement of cycles, Complete graphs, Wheel
graphs and Friendship graphs which admit 2-DNNSDF.

IndexTerms - Signed dominating function, k-distance non-negative signed dominating function.

. INTRODUCTION

Let G be a finite and simple graph with the vertex setV =V(G) and edge setE = E(G).If v is a vertex of a graph
G, the open k-neighborhood of v, denoted by N, (v) and N,[v] = N, (v) U {v}is the closed k-neighborhood of v.
3, (G) = min{|N,(v)|[v € V} and A, (G) = max{|N,(v)|v € V}

In 1995, J.E. Dunbar et al. defined signed dominating function. A function f: V—>{—1,4+1}is a signed
dominating function of G, if for every vertex v € V, f(N[v]) = 1. The signed domination number, ‘denoted by
v,(G), is the minimum weight of a signed dominating functionon G [1].

In 2013 [2], Zhongsheng Huang et al. introduced the concept of on non-negative signed domination in
graphs. A functionf: V - {—1,41}is a non-negative signed dominating function of G, if for every vertex v € V,
f(N[v]) = 0. The non-negative signed domination number, denoted by /’¥ (G). is the minimum weight of a non-
negative signed dominating functionon G.

In this paper, we introduced the concept of k-distance non-negative signed dominating function. A function

f + V(G) - {—1,+1}%} isak-distance non-negative signed dominating function (k-DNNSDF) of a graph G, if
for every vertex v € V, f(Ni[v]) = Xyen, f(w) = 0. The k-distance non-negative signed domination number (k-
DNNSDN) of a graph G equals the minimum weight of a k-DNNSDF of G, denoted by 5/ (). This paper contains

some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, Complement of cycles,
Complete graphs, Wheel graphs and Friendship graphs which admit 2-DNNSDF.

MAIN RESULTS
In this section, we obtain some properties of K-DNNSDN in graphs.

Lemma .1. Letf bea k-DNNSDF of G and letSc V. Then f(S) = |S|(mod 2).

Proof. Let ST ={v|f(v) =1, ve Stand S~ = {v|f(v) =-1, v € S}. Then |ST| + |S™| = |S]and |ST| —
[ST] = f(S). Therefore f(S) + S| = 2|S|.

Theorem .1. LetG bea graph of order n. If 7 (6) = n, then G = K,.

Proof. Proof. Let " (G) = n. If deg(v) = 1for somev € V(G), then the function f : V(G) — {—1,+1} defined by
f(v) = —landf(x) = +1 for all other vertices x, is k-DNNSDF and this implies that N (G)<n-2, a
contradiction. Thus A(G) = 0andso G = K,.

Observation .2.1. Let G be a graph of order n and k be a positive integer. Then ;/kv’;’ 6) = ;/Q’N(Gk ).
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Proof. Let f be a k-DNNSDF of G. It is easy to see that for every v € V(G), N,[v] = N_k[v]. Hence f (N k[v]) =
f(N,[v]) Therefore f is a k-DNNSDF of G if and only if f is a k-distance non-negative signed dominating set of G™ .

Thus 27V (6) = M (6F).

Lemma .2. LetG bea graph of order n. Then 2y(G) —n< /" (G).
Proof. Let f be a minimum non-negative signed dominating function of G. Let V' ={u € V: f(u) = +1}
andV- = {fueV: f(u = —13}.Ifv € V- since f (N; [v]) = 0, then v has at least one neighbor in V*. Therefore
V*is a dominating set for Gand [V*| = y(G). Since /N (G) = |V*| — [V~ ]andn = |[V*|+ [V~ then /N(G) =
2|V*| — nand finally we have »V(G) =2y(G)- n.

Lemma .3. Letn > 5 bean integer. Then the cycle ¢, admits 2-DNNSDF with
AV (C,) < kwhenn = 5k.

2,’5"(6,[) < k+ 1whenn =5k+1.
AN(C,) < k+2whenn =5k +2orn =5k +4.

2,’5"(6,[) < k+ 3whenn =5k+3. ajon

Proof. Let n > 5 be an integer. Let V(C,) = {a; /1 < i < n}and E(C,)= {a a;g,1/1 < i < n}. Define a
function f : V(C,) — {—1,+1%} such that f(a;) = —1,wheni = 5lor i = 50— 1,1>1 and otherwise f(a;) = +1.
Consider the vertex q; for 1 =i = n, Ny[a,] = {a;_,,a;_;-a;» a;4; a;4, 3. From the above labeling, it is easy to
observe that at least 3 vertices of any five consecutive vertices must have +1 sign and hence f(N;[a;]) = 1 for all i,
1<i<n.

Thus from the above labeling the result follows.

Example.1. +1
+1
o
+1
1 O O + -1
1 (@ O -1 +1
+1
+1
+1 +1
+1 +1
-1 -1

From the above graphs we observe that /¥ (Cs) < 1 #3=n-2, ¥ (C) < 2 #4=n-2and )V(C;) < 3 #5=n-2.
From Lemma .3 and Example .1, we can have following result.

Remark .1. Forn>8, /¥(C,) < [n/5]1+3 < n-2.

Lemma .4. Letn > 5 bean integer. Then the path P, admits 2-DNNSDF with
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Z,ISV(Pn)S kwhenn =5k orn =5k + 2,
2,’;’(Pn)s k + 1whenn =5k + 3.
IN(P,) < k+2whenn =5k +1orn =5k +4.

Proof. Let V(B,) = {a; /1 <i < n}andE(PR,) = {a;a;41 /1 <i<n -1}

Case 1: Suppose n =5k or n =5k +3 or n = 5k + 4 for k > 1. A 2-DNNSDF f on B, is given by : V(B) -
{—1,+13} define by f(a;) = —1,wheni =5lori=5l—4,1<1<kand otherwise f(a;) = +1.

Case 2: Suppose n =5k + 1 or 5k + 2 for k > 1.

A 2-DNNSDF f on B, is given by f : V(B,) = {—1,+1} define by f(a;) =—1, wheni=5lori=51-41<I[<k,
f(a;)) =+1wheni = 5k + 1or5k + 2 and otherwise f(a;) = +1 Consider the vertex g, for 3 < i < n -2, N,[a;] =
{a;,_5.a;_1,a;:a;41a;., - From the above labeling, it is easy to observe that at least 3 vertices of N,[a;] must have
+1 sign and hence f(N,[a;]) = 1foralli,3<i<n-—2 Also the first and last four wvertices have at least two
vertices of +1 sign. Hence f (Ny[a;]) = Owhen i =2,n— 2.Also the first and last three vertices have at least
two vertices of +1 sign. Hence f(N,[a;]) = 1wheni=1,n.

Thus from the above labeling the result follows.

Example .2.

O S S S O O S, S S O O

-1 +1 +1 +1 -1 -1 +1 +1 +1 -1 +1

From the above graphs we observe that 7 (Ps) < 1 #3=n-2, ;¥ (P) < 2 #4=n-2.
From Lemma .3and Example .2, we can have following result.

Remark .2. Forn > 7, z,IsV(Pn) <[n/51+32< n-—2.

Lemma .5. Let G be a connected graph of order n. Then 712\],1;](0) =n—2 if and only if
G=P,, P; or C5.

Proof. Let }% (G) =n —2.We claim that A(G) < 2.Assume, to the contrary, that A(G) = 3. Let v be a
vertex of maximum degree and let N,(v) = {v;,..., va}. fN[v;] 0 Ny[y;] = {v} for some i = j, then
define f: V(G) - {—=1,+13} by f(v;) = f(vy)) = —1land f (x) = 1for all other vertices x. Clearly, fis a 2-
DNNSDF of G with weight n — 4 which leads to a contradiction. Assume that N,[v;] N Ny[v; | = {v}forevery
pairi,j,1 < i = j < A(G). Itis easy to see that the function f:V(G) —» {—1,4+1} definedby f(v) = f(v;) =
—land f (x) = 1for all other vertices X, is a 2-DNNSDF of G of weight n — 4 which leads to a contradiction.
Therefore A(G) < 2and so G is a path or cycle. By Remark .1and .2, that is not possible to /}% (G) = n — 2.

-1

o)
O— 0O o o o) \
+1 -1 +1 +1 -1

+ -1
! +1 -1

Note that for the graphs C, and P, , we have /)" (C,) = /}"(P,) =0 #n— 2. ThereforeP,, P; and C; are the only

graphs in which 7’2‘”5" (G) = n— 2.The graphs P,, P; and C; admit k-DNNSDF with ;/’ZV’SV (P) =0, Zr’SV (P;) = 1land ;/’ZV’SV (C3) =
1.

Lemma .6. Letn > 5 be an integer. Then the graph C,F admits 2-DNNSDF with ;/’ZV’SV (chH <o.
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Proof. Let V(C/) = {a;b;/1 <1 < n} and E(C)) = {a;a;11/1 <1 <n-1} U {aya,} v {ab /1 <1<n}
Define a function f : V(Cf) - {—1,+1}.f(a;) =+land f(b;) = —1for 1 < i < n. Now we consider
the vertices a; . N»[a;] = {a;_», a;_1, a;, Qj11, Q42 ,bi_1,b;,b;x1 }, by the above labeling f(N,[a;]) = 2 forl <
i < n. Next, we consider the vertices b;. Ny[b;] = {b;,a;_1,2ai,a;41 } by the above labeling f(N,[b;]) = 2 for
1 < i < n. Thus f is 2-DNNSDF with ;/2‘"15"(C{) <0.

Theorem .2. Letn > 5be an integer. Thenthe graph C, admits 2-DNNSDF with AV (C, ) < Owhenn isevenand AV (C, ) <
1whenisn odd.

Proof. LetV(C, ) = {a; /1 < i < n}. Define a function f : V(C, ) - {—1,+13} by

f(a;) = +1whenis n odd and f(a;) = —1 when niseven for 1 < i < n. Note that N,[a;] = V(C, ) for
1 < i < n. Suppose n is odd, then by the above labeling f(N;[a;]) = "Zil(+1) + "2;1(—1) =1. Thus f is 2-DNNSDF with
AN(C, ) < 1. Suppose n is even, then by the above labeling f(N,[a;]) = '21(+1) + '21(—1) =0. Thus f is 2-DNNSDF with
s (G ) 0.

After studying the above results, we find the following more general result:
Theorem .3. Ifdiam(G) > k, then G admits k-DNNSDF.

Proof. Since diam(G) > k, for every vertex v € V(G),we have N,[v] = V(G). Suppose n = 2p. Then we can label p
vertices with +1 signs and p vertices with -1 signs. In this case, f(Ni[v]) = p(+1) + p(=1) = 0.

Suppose n = 2p + 1. Then we can label p + 1 vertices with +1 signs and p vertices with -1 signs. In this case,
fN[vD) = (p + 1)(+1) + p(—1) = 1. Thus G admits k-DNNSDF.

The next result follows immediately from the above theorem.
Lemma .7. The complete graph K,, admits 2-DNNSDF forn > 1.

For the integers m, n(= 1), the complete bipartite graph K, ,, admits 2 DNNSDF.
The wheel graph W, admits 2-DNNSDF forn > 3.

Thegraph G = B,, + B, admits 2-DNNSDF form, n >1.

The friendship graph 7,, admit 2-DNNSDF.
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